Abstract

We present an approach to construct biocompatible and photoluminescent hybrid materials comprised of carbon quantum dots (CQDs) and TEMPO-oxidized cellulose nanocrystals (TO-CNCs). First, the amino-functionalized carbon quantum dots (NH2-CQDs) were synthesized using a simple microwave method, and the TO-CNCs were prepared by hydrochloric acid (HCl) hydrolysis followed by TEMPO-mediated oxidation. The conjugation of NH2-CQDs and TO-CNCs was conducted via carbodiimide-assisted coupling chemistry. The synthesized TO-CNC@CQD hybrid nanomaterials were characterized using X-ray photoelectron spectroscopy, cryo-transmittance electron microscopy, confocal microscopy, and fluorescence spectroscopy. Finally, the interactions of TO-CNC@CQD hybrids with HeLa and RAW 264.7 macrophage cells were investigated in vitro. Cell viability tests suggest the surface conjugation with NH2-CQDs not only improved the cytocompatibility of TO-CNCs, but also enhanced their cellular association and internalization on both HeLa and RAW 264.7 cells after 4 and 24 h incubation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.