Abstract
Cellulose nanocrystals (CNCs) are negatively charged colloidal particles well known to form highly stable surfactant-free Pickering emulsions. These particles can vary in surface charge density depending on their preparation by acid hydrolysis or applying post-treatments. CNCs with three different surface charge densities were prepared corresponding to 0.08, 0.16 and 0.64 e nm(-2), respectively. Post-treatment might also increase the surface charge density. The well-known TEMPO-mediated oxidation substitutes C6-hydroxyl groups by C6-carboxyl groups on the surface. We report that these different modified CNCs lead to stable oil-in-water emulsions. TEMPO-oxidized CNC might be the basis of further modifications. It is shown that they can, for example, lead to hydrophobic CNCs with a simple method using quaternary ammonium salts that allow producing inverse water-in-oil emulsions. Different from CNC modification before emulsification, modification can be carried out on the droplets after emulsification. This way allows preparing functional capsules according to the layer-by-layer process. As a result, it is demonstrated here the large range of use of these biobased rod-like nanoparticles, extending therefore their potential use to highly sophisticated formulations.This article is part of the themed issue 'Soft interfacial materials: from fundamentals to formulation'.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.