Abstract

We have performed systematical investigations of intermixing effects in In0.53Ga0.47As/InP single quantum wells induced by 30-keV Ar+-ion beam implantation with doses ranging from 1012 to 1014 cm−2 and a subsequent rapid thermal annealing (RTA) at temperatures between 600 and 900 °C. After implantation and RTA at 600 °C we observe a significant increase of the photoluminescence emission energy of about 60 meV in comparison with unimplanted heterostructures, indicating that the intermixing is determined by implantation. For RTA above 850 °C, in contrast, the energetic shifts up to 200 meV observed for the implanted samples are similar to the shift in unimplanted samples, indicating a predominant contribution of thermal interdiffusion. The significant decrease of Ga concentration after interdiffusion is confirmed quantitatively by Raman measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.