Abstract
We present a systematic study of porous silicon photoluminescence quenching in the presence of precisely controlled amounts of linear aliphatic alcohols (from methanol to hexanol) in gas and liquid phases. From the concentration dependence of photoluminescence quenching response we determined sensitivity of porous silicon sensor for studied analytes. The sensor sensitivity revealed nearly monotonous change with the length of alcohol molecule within the homological set of alcohols in both gas and liquid phases. However, while in gas phase the sensor sensitivity rose with the length of alcohol chain, in liquid phase we observed the opposite behaviour. Photoluminescence quenching behaviour in liquid phase is very well explained by exciton dielectric quenching mechanism. In gas phase photoluminescence quenching depends both on analyte dielectric constant and analyte equilibrium concentration inside porous matrix which is controlled by capillary condensation effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.