Abstract
Mn4+-doped magnetoplumbite-type BaMg6Ti6O19 and spinel-type Mg2TiO4 red phosphors were synthesized by a solid-state reaction. BaMg6Ti6O19:Mn4+ and Mg2TiO4:Mn4+ were formed as main phase above 1200 oC. Although the emission peak of BaMg6Ti6O19:Mn4+ and Mg2TiO4:Mn4+ were almost the same, the excitation peak of BaMg6Ti6O19:Mn4+ and Mg2TiO4:Mn4+ were different. The 4A2→4T1 transition peak of Mg2TiO4:Mn4+ shifted to a shorter wavelength side than that of BaMg6Ti6O19:Mn4+ and 4A2→4T2 shifted to a longer wavelength side. The crystal field splitting energy of Mg2TiO4:Mn4+ was lower than that of BaMg6Ti6O19:Mn4+. By the additional of R block, the racah parameter B increased and C decreased. Although the increase of B causes a blue-shift of the emission wavelength and the decrease of C causes a red-shift of the emission wavelength, PL emission wavelength was little different due to the influence of both racah parameter. Thus, it was suggested that the existence of R block results in a difference of photoluminescence properties.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have