Abstract

We studied the influence of the arsenic pressure during low-temperature GaAs overgrowth of InAs quantum dots on their optical properties. In the photoluminescence spectrum of quantum dots overgrown at a high arsenic pressure, we observed a single broad line corresponding to unimodal size distribution of quantum dots. Meanwhile, two distinct peaks (~1080 and ~1150 nm) at larger wavelengths are found in the spectra of samples with quantum dots overgrown at a low arsenic pressure. We attributed this phenomenon to the high-pressure suppression of atom diffusion between InAs islands at the overgrowth stage, which makes it possible to preserve the initial unimodal size distribution of quantum dots. The same overgrowth of quantum dots at the low arsenic pressure induces intensive mass transfer, which leads to the formation of arrays of quantum dots with larger sizes. Integrated photoluminescence intensity at 300 K is found to be lower for quantum dots overgrown at the higher arsenic pressure. However, a difference in the photoluminescence intensity for the high- and low-pressure overgrowths is not so significant for a temperature of 77 K. This indicates that excess arsenic incorporates into the capping layer at high arsenic pressures and creates numerous nonradiative recombination centers, diminishing the photoluminescence intensity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.