Abstract
This paper presents the results of the experimental studies of InAs quantum dot overgrowth by a low-temperature GaAs layer at different arsenic vapor pressures. It is revealed that a threefold decrease in the arsenic pressure at a fixed deposition rate of the capping layer leads to a change in the shape of the photoluminescence spectrum of quantum dots with one maximum at the level of 1.19 eV to the shape of the spectrum with two low-energy contributions at the levels of 1.08 and 1.15 eV. Based on the analysis of the power dependences of the photoluminescence spectra, it is found that the low-energy contributions of the photoluminescence of quantum dots overgrown at a low arsenic pressure correspond to the ground-state emission two groups of quantum dots with different average sizes formed during mass transfer in the “quantum dot – wetting layer – matrix” system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.