Abstract

The dielectric contrast effect is usually evoked to explain anisotropy of optical properties of elongated nanoobjects, for example, semiconductor nanowires. We applied two-dimensional polarization imaging microscopy to measure the polarization of photoluminescence (PL) excitation and PL intensity of nanoaggregates of in-situ formed MAPbBr3 perovskite nanoparticles in a stretched polymeric matrix. Scanning electron microscopy images of these objects were also acquired to characterize their sizes and shapes. We find that individual perovskite aggregates with sizes of 100–300 nm often possess a PL excitation polarization degree as high as 0.5–0.9, which is up to three times higher than the polarization degree of absorption predicted by the dielectric contrast effect. Small aggregates of nanoparticles possess an emission polarization degree substantially higher than that of excitation. Computer simulations of many possible scenarios show that the dielectric contrast alone cannot quantitatively explain the polarization properties of the studied objects. We propose energy transfer to localized emitting sites and the dependence of PL yield on excitation power density as possible factors strongly influencing the polarization properties of PL emission and PL excitation, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.