Abstract

Photoluminescence (PL) of GaAs0.97Bi0.03 alloy was measured over a wide range of temperatures and excitation powers. Room temperature PL with peak wavelength of 1038 nm and full-width-half-maximum of 75 meV was observed which is relatively low for this composition. The improved quality is believed due to reduced alloy fluctuations by growing at relatively high temperature. The temperature dependence of PL peak energy indicated significant exciton localization at low temperatures. Furthermore, the band gap temperature dependence was found to be weaker than GaAs. An analysis of dominant carrier recombination mechanism(s) was also carried out indicating that radiative recombination is dominant at low temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.