Abstract
Using a double-tubed-coaxial-line-type microwave plasma chemical vapor deposition (MPCVD) system, hydrogenated amorphous silicon (a-Si:H) nanoball films, which include Si nanocrystals, can be fabricated. A high deposition rate of 1600 Å/s is achieved at a gas flow rate of 30 ml/min. Photoluminescence (PL) around 780 nm is observed at room temperature after the a-Si:H nanoball film is thermally oxidized in air or in pure oxygen gas. We have fabricated thermally oxidized a-Si:H nanoball films under various fabrication and oxidation conditions. As the substrate temperature during deposition becomes higher, the PL intensity decreases, and PL cannot be observed above 200°C. The PL intensity is the strongest when the substrate is set about 6 cm from the discharge tube end. As the discharge time increases, the film thickness increases and saturates, and consequently the PL intensity increases and also saturates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.