Abstract

The low temperature (77 K) photoluminescence characteristics of Al x Ga1-x N-GaN strained layer quantum wells with differentx values grown by metalorganic chemical vapor deposition (MOCVD) were investigated. The photoluminescence spectra were useful in analyzing both quantum confinement effects and strain induced energy shifts. The strain induced shifts were found to be a strong function of aluminum compositionx. A model was developed to calculate the strain induced bandgap shifts atk = 0. The values predicted by this model which took into account the wurtzite crystal structure of the material system, were in good agreement with (i.e. within 2 meV of) the experimentally measured shifts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call