Abstract

A series of Eu3+-doped ZnO nanoparticles were synthesized by the nitrate-citrate gel combustion method. Rietveld refinement results verified that the compounds were crystallized in the wurtzite hexagonal structure with space group P63mc (No. 186). Field emission scanning electron microscopy micrographs show porous morphology. Transmission electron microscopy analysis revealed that the particles are in the range of 35-40 nm. The photoluminescence spectra of ZnO nanocrystallites exhibit a broad intense peak at 506nm and a weak emission peak at 379 nm under UV excitation. The characteristic emission peaks were observed at 592 and 612 nm due to the 5D0\(\rightarrow\)7F1 and 5D0\(\rightarrow\)7F2 transitions of the Eu3+ ion. The photocatalytic degradation of methylene blue dye increases with increase in Eu3+ ion concentration. 5 mol% Eu3+-doped ZnO nanoparticles showed 100% dye degradation within 150 min. The present work can be useful for display devices and environmental remedy applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.