Abstract

ZnO nanoparticles are one of the prominent photocatalysts for environmental applications due to its high redox ability, nontoxic and higher stability. This report explains the synthesis of ZnO nanoparticles by a simple solution combustion method using zinc nitrate hexahydrate as an oxidizing agent and incense stick powder as fuel at 400 °C. Several techniques were adopted for the characterization of the obtained product. X-ray diffraction (XRD) pattern shows that a lower concentration of fuel gives pure ZnO and a higher concentration of fuel results in calcium doped ZnO with a cubic phase having a crystallite size of 32–28 nm. UV–vis spectrum shows that as the fuel concentration increases, band gap decreases and reaches to 3.33 eV for 3 g of fuel. Spongy networks with many pores wereobserved in the scanning electron microscope (SEM) and transmission electron microscope (TEM) images showed the average particle size of Ca doped ZnO NPs is about 20 nm. Pure and Ca doped ZnO nanoparticles were examined for photocatalytic degradation of methylene blue (MB) dye under UV light irradiation. The results prove that Ca doped ZnO nanoparticles show good photocatalytic activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call