Abstract

AbstractStrong exciton‐photon coupling is achieved when the interaction between molecules and an electromagnetic field is increased to a level where they cannot be treated as separate systems. This leads to the formation of polaritonic states and an effective rearrangement of the potential energy surfaces, which opens the possibility to modify photochemical reactions. This work investigates how the strong coupling regime is affecting the photoisomerization efficiency and thermal backconversion of a norbornadiene–quadricyclane molecular photoswitch. The quantum yield of photoisomerization shows both an excitation wavelength and exciton/photon constitution dependence. The polariton‐induced decay and energy transfer processes are discussed to be the reason for this finding. Furthermore, the thermal back conversion of the system is unperturbed and the lower polariton effectively shifts the absorption onset to lower energies. The reason for the unperturbed thermal backconversion is that it occurs on the ground state, which is unaffected. This work demonstrates how strong coupling can change material properties towards higher efficiencies in applications. Importantly, the experiments illustrate that strong coupling can be used to optimize the absorption onset of the molecular photoswitch norbonadiene without affecting the back reaction from the uncoupled quadricyclane.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.