Abstract

AbstractThe thermal decomposition behavior and the pyrolysis products of benzyl‐2,3,4,6‐tetra‐O‐acetyl‐β‐D‐glucopyranoside (BGLU) were studied with synchrotron vacuum ultraviolet (VUV) photoionization mass spectrometry at temperatures of 300, 500 and 700 °C at 0.062 Pa. Several pyrolysis products and intermediates were identified by the measurement of photoionization mass spectra at different photon energies. The results indicated that the primary decomposition reaction was the cleavage of O‐glycosidic bond of the glycoside at low temperature, proven by the discoveries of benzyloxy radical (m/z = 107) and glycon radical (m/z = 331) in mass spectra. As pyrolysis temperature increased from 300 to 700 °C, two possible pyrolytic modes were observed. This work reported an application of synchrotron VUV photoionization mass spectrometry in the study of the thermal decomposition of glycoside flavor precursor, which was expected to help understand the thermal decomposition mechanism of this type of compound. The possibility of this glycoside to be used as a flavor precursor in high temperature process was evaluated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call