Abstract

We present energy- and angle-resolved photoionization from Xe in an ultrastrong laser field at 10{sup 19} W/cm{sup 2}. The observed yields are consistent with the tunneling ionization of Xe{sup 9+} to Xe{sup 24+}. However, energy and angle-resolved photoelectron spectra show differences for electrons whose final energies are above or below 0.5 MeV, which is approximately the ponderomotive energy at these intensities. Above 0.5 MeV, the observed photoelectron cutoff energy (between 1 and 1.35 MeV), photoelectron energy spectra, and the angle-resolved photoelectron azimuthal distributions agree with a model using tunneling ionization, multiple charge states, a classical relativistic continuum, and nonparaxial three-dimensional (3D) focused laser field. Below 0.5 MeV the yields and angular distributions observed indicate dynamics not included within a classical, single electron model of the interaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.