Abstract
Far-red light and long photoperiods promote flowering in Arabidopsis. We report here that when 30-day-old vegetative plants were induced with a continuous light treatment enriched in far-red light, flowers developed directly from previously initiated primordia. Specifically, plants induced with our continuous incandescent-enriched (CI) treatment produced an average of two primary-axis nodes with a leaf/flower phenotype, indicating that approximately two leaf/paraclade primordia per plant produced an individual flower from tissue that typically would differentiate into a paraclade (secondary inflorescence). Assays for APETALA1::beta-glucuronidase activity during the CI photoinduction treatment indicated that the floral meristem identity gene APETALA1 was transcriptionally activated in primordia with a leaf/paraclade bias and in primordia committed to leaf/paraclade development. APETALA1::beta-glucuronidase activity levels were initially highest in young primordia but were not correlated strictly with primordium fate. These results indicate that primordium fate can be modified after primordium initiation and that developing primordia respond quantitatively to floral induction signals.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have