Abstract

Most self-powered electrochemical sensors (SPESs) are limited by low open circuit voltage and power density, leading to a narrow detection range and low sensitivity. Herein, a photoinduced Zn-air battery-assisted SPES (ZAB-SPES) is proposed based on cobalt and sulfur co-doped carbon nitride with the cyano group (Co, S-CN). The cyano functionalization remarkably enhances visible light utilization, and the cyano moiety acts as an electron-withdrawing group to promote electron enrichment. Co and S co-doping can create a p-n homojunction within carbon nitride, enabling the efficient migration and separation of carriers, thereby significantly improving the performance of the oxygen reduction reaction. The synergistic effects endow Co, S-CN photocathode with an open circuit voltage of 1.85V and the maximum power density of 43.5µW cm-2 in the photoinduced ZAB. Employing heavy metal copper ions as the target model, the photoinduced ZAB-SPES exhibited dual-mode and sensitive detection. Furthermore, a portable detection device based on the photoinduced ZAB-SPES is designed and exhibits high linearity in the range of 5 ~ 600nM with a detection limit of 1.7nM. This work offers a portable detection method based on the photoinduced ZAB-SPES in the aquatic environment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.