Abstract
Cyclopropane fragments, which widely exist in marketed drugs and natural products, can confer special pharmacological properties to small-molecule drugs. Therefore, developing methods to construct cyclopropanes is of great significance. Nevertheless, the introduction of cyclopropane primarily relies on already-formed cyclopropyl groups, which significantly restricts the diversity of cyclopropane skeletons. Late-stage direct cyclopropanation is still a challenging task. Herein, a photo-induced intermolecular deoxycyclopropanation reaction that employs alcohols as substrates, and 1 mol.% of 2,3,5,6-tetrakis(carbazol-9-yl)-1,4-dicyanobenzene (4CzTPN)as organophotocatalyst is reported. This method proceeds with high transformation efficiency (up to 98% yield) and exhibits broad functional group tolerance, such as primary, secondary, and tertiary alcohols as well as various activated β-halogenated alkenes. This process is mild, easy to operate, and has low equipment requirements. The power of this technology is demonstrated by the late-stage functionalization of five marketed drugs and five natural products.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Advanced science (Weinheim, Baden-Wurttemberg, Germany)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.