Abstract

Heptazine-assembled polymeric carbon nitride (CN) materials have fascinated the research community as a photocatalyst for hydrogen evolution while less attention has been devoted to the mechanistic features of the host materials. Using excited-state nonadiabatic dynamics simulations, the molecular-level picture of the decomposition of heptazine hydrogen bonded to water molecule(s) (heptazine-water complex) into heptazinyl and hydroxyl biradical products is revealed. Dynamics simulations show that hydrogen detachment from the water molecule to the heptazine occurs within tens of femtoseconds and suggest that excited-state deactivation via N-H······O-H electron-driven proton transfer (EDPT) is the dominant and most relevant excited-state deactivation process in heptazine-water complexes leading to conical intersection. The observation of photorelaxation-induced water splitting by heptazine is proof of the water-splitting reaction principle, which presents further challenges for computational and experimental investigations of the deactivation of heptazinyl and OH biradical products for efficient hydrogen evolution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.