Abstract

Achieving highly efficient hierarchical photocatalysts for hydrogen evolution is always challenging. Herein, hierarchical mesoporous NiO@N-doped carbon microspheres (HNINC) are successfully fabricated with ultrathin nanosheet subunits as high-performance photocatalysts for hydrogen evolution. The unique architecture of N-doped carbon layers and hierarchical mesoporous structures from HNINC could effectively facilitate the separation and transfer of photo-induced electron-hole pairs and afford rich active sites for photocatalytic reactions, leading to a significantly higher H2 production rate than NiO deposited with platinum. Density functional theory calculations reveal that the migration path of the photo-generated electron transfer is from Ni 3d and O 2p hybrid states of NiO to the C 2p state of graphite, while the photo-generated holes locate at Ni 4s and Ni 4p hybrid states of NiO, which is beneficial to improve the separation of photo-generated electron-hole pairs. Gibbs free energy of the intermediate state for hydrogen evolution reaction is calculated to provide a fundamental understanding of the high H2 production rate of HNINC. This research sheds light on developing novel photocatalysts for efficient hydrogen evolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.