Abstract

Because the development of attopulses, charge migration induced by short optical pulses has been extensively investigated. We report a computational purely electronic dynamical study of ultrafast few femtoseconds (fs) charge transfer and charge migration in realistic passivated stoichiometric Au11 and Au20 gold nanoclusters functionalized by a bipyridine ligand. We show that a net significant amount of electronic charge (0.1 to 0.4 |e| where |e| is the electron charge) is permanently transferred from the bipyridine chromophore to the gold cluster during the short 5-6 fs UV-vis strong pulse. This electron transfer to the metallic core is induced by the optical excitation of electronic states with a partial charge transfer character involving the chromophore before the onset of nuclei motion. In addition, the photoexcitation by the strong fs pulse builds a nonequilibrium electronic density that beats between the chromophore and the metallic core around the average of the transferred value. Modular systems made of a donor chromophore that can be photoexcited in the UV-vis range coupled to an efficient acceptor that could trap the charge are of interest for applications to nanodevices. Our study provides understanding on the very early, purely electronic dynamics built by the fs optical excitation and the initial charge separation step.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.