Abstract
The photoexcited state in superconducting metals and alloys was studied via pump-probe spectroscopy. A pulsed Ti:sapphire laser was used to create the non-equilibrium state and the far-infrared pulses of a synchrotron storage ring, to which the laser is synchronized, measured the changes in the material optical properties. Both the time- and frequency- dependent photoinduced spectra of Pb, Nb, NbN, Nb{0.5}Ti{0.5}N, and Pb{0.75}Bi{0.25} superconducting thin films were measured in the low-fluence regime. The time dependent data establish the regions where the relaxation rate is dominated either by the phonon escape time (phonon bottleneck effect) or by the intrinsic quasiparticle recombination time. The photoinduced spectra measure directly the reduction of the superconducting gap due to an excess number of quasiparticles created by the short laser pulses. This gap shift allows us to establish the temperature range over which the low fluence approximation is valid.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.