Abstract

Photolysis of methyl iodide in solid parahydrogen (p-H2) at about 5 K is studied with ultraviolet light at 253.7 and 184.9 nm. It is found that the light at 253.7 nm produces only methyl radical, whereas the light at 184.9 nm yields both methyl radical and methane. The mechanism of the formation of the photoproducts is elucidated by analyzing the temporal behavior of the observed vibrational absorption. It is concluded that methyl radical in the ground state does not react with p-H2 molecules appreciably but that the radical in the electronic excited state of B̃(2A1′), accessible by reabsorption of 184.9 nm photons by the radical, decomposes to a singlet methylene CH2 ã(1A1) and a hydrogen atom (2S) and that the singlet methylene reacts with a p-H2 molecule to give methane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.