Abstract

Photoinduced multiple microchannels in the interior of silicon produced by an 800-nm femtosecond laser were observed. The multiple microchannels were aligned spontaneously with a period along the propagation direction of the laser beam, which could be attributed to the interface spherical aberration induced due to refractive-index mismatch. We also observed that the depth of the photoinduced microchannels increased with the increase of the laser power. The power dependence of the depth of photoinduced microchannels in silicon was different from that in transparent materials, which probably arose from the competition between self-focusing due to the nonlinear Kerr effect and self-defocusing related to the thermal accumulation in the process of laser irradiation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call