Abstract

Accessing versatile C(sp3)-C(sp3) bond through the cross-electrophile coupling of two distinct etheric C-O bonds is crucial in organic synthesis but remains barely explored. Herein, we report an innovative photoinduced low-valent zirconocene catalysis enabling the reductive coupling of ethers with high activity and cross-selectivity. Mechanistic investigation suggests that photoexcitation of low-valent zirconocene facilitates the C(sp3)-O bond scission of benzylic ethers, leading to the benzylic radicals intermediate via a single-electron reduction pathway. The subsequent recombination of this benzylic radical with the Zr center followed by carbomagnesiation generates benzylic Grignard reagents for downstream coupling with aliphatic ethers through an SN2-like mechanism. In application, a wide range of ethers readily in situ derived from aldehydes and ketones becomes feasible with high functional group compatibility as well as excellent cross-selectivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.