Abstract

Photo-induced electron transfer versus molecular structure of acceptors is investigated using ultrafast time-resolved transient grating spectroscopy. Typical laser dyes Rhodamine 101 (Rh101) and Rhodamine 6G (Rh6G) in electron donor solvent—aniline are adopted as the objects. The forward electron transfer time constant from aniline to the excited singlet state of two Rhodamine dyes and subsequent back electron transfer from two dyes to aniline are measured. The experimental results denote that Rh6G presents faster electron transfer rates with aniline in both forward electron transfer and back electron transfer processes. With chemical calculation and qualitative analysis, it is found that the flexible molecular geometry of Rh6G leads to stronger electron coupling with donor solvent and further gives rise to larger electron transfer rates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call