Abstract

The coupled processes of intermolecular photoinduced forward electron transfer and geminate recombination between the (hole) donor (Rhodamine 3B) and (hole) acceptors (N,N-dimethylaniline) are studied in three molecular liquids: acetonitrile, butyronitrile, and benzonitrile. Two color pump-probe experiments on time scales from approximately 100 fs to hundreds of picoseconds give information about the depletion of the donor excited state due to forward electron transfer and the survival kinetics of the radicals produced by forward electron transfer. The data are analyzed with a model presented previously that includes distance dependent forward and back electron transfer rates, donor and acceptor diffusion, solvent structure, and the hydrodynamic effect in a mean-field theory of through solvent electron transfer. The forward electron transfer is in the normal regime, and the Marcus equation for the distance dependence of the transfer rate is used. The forward electron transfer data for several concentrations in the three solvents are fitted to the theory with a single adjustable parameter, the electronic coupling matrix element Jf at contact. Within experimental error all concentrations in all three solvents are fitted with the same value of Jf. The geminate recombination (back transfer) is in the inverted region, and semiclassical treatment developed by Jortner [J. Chem. Phys. 64, 4860 (1976)] is used to describe the distance dependence of the back electron transfer. The data are fitted with the single adjustable parameter Jb. It is found that the value of Jb decreases as the solvent viscosity increases. Possible explanations are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call