Abstract

The fluorescence quenching of pyranine by benzoquinone in acetonitrile medium was studied using steady-state and time-resolved fluorescence techniques. The quenching process was characterized by a Stern-Volmer plot, which displayed a linear aspect. From the linear plot, the bimolecular quenching rate constant was obtained. The obtained rate constants are within diffused controlled limits. The results show that benzoquinone can efficiently quench the fluorescence of pyranine with dynamic quenching rate constants in the order of 1010 M-1 s-1 , suggesting that the pyranine can act as a good electron donor for photoinduced electron transfer in artificial photosynthesis and organic solar cells. In addition, the electron injection dynamics of a pyranine/titanium dioxide semiconductor film was also investigated and electron injection from the excited state pyranine into the conduction band of titanium dioxide is suggested. These preliminary results hold promise for the possibility of using pyranine in dye-sensitized solar cells. Copyright © 2016 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.