Abstract
The photoinduced electron transfer (PET) between 8-(4-methoxyphenyl)-3,5-di[(E)-1-(4-methoxyphenyl)methylidene]-1,2,3,5,6,7-hexahydrodicyclopenta[b,e]pyridine (DMP) and aniline is studied in acetonitrile medium by using steady state and time resolved absorption and fluorescence spectroscopic methods. Bimolecular quenching rate constants (kq) were calculated from the obtained linear Stern–Volmer plots from both steady state and time resolved measurements. The rate constant (kq) for PET between DMP and aniline is 1.4×1010M−1s−1, which is in diffusion control limit. The free energy change (ΔG0) has been evaluated by using Rehm–Weller equation for the evidence of electron transfer from aniline to DMP. Direct evidence for the electron transfer reaction in the present system has been obtained by characterizing the aniline cation radical using nanosecond time resolved absorption measurements in the visible region. Further, this quenching mechanism is attributed to be reductive in nature i.e. electron transfer occurs from ground state aniline to excited DMP. This is the first example of reductive fluorescence quenching of DMP with aniline in acetonitrile ever known.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.