Abstract

Fullerene derivative 1,2,5-triphenylpyrrolidinofullerene (TPPF) forms optically transparent clusters (mean diameter of ∼180 nm) in toluene/acetonitrile mixtures. The bimolecular rate constants for the quenching of a singlet excited state of TPPF clusters by various electron donors (substituted anilines and heteroaromatics) were found to be significantly higher than that of the corresponding monomeric analogue. The local concentration of the fullerene molecules is much higher in these clusters because the microheterogeneous environment facilitates trapping of donor molecules. Formation of long-lived electron-transfer products, following the photoexcitation of the TPPF cluster and various electron donors, was confirmed through flash photolysis studies. The TPPF cluster−donor assemblies when deposited as a thin film on a nanostructured SnO2 semiconductor film, act as a photosensitive electrode material. Light energy can be harvested using an intermolecular electron transfer between the TPPF cluster film and ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.