Abstract

The first systematic pico-nanosecond time-resolved spectroscopic study of the firefly emitter oxyluciferin and two of its chemically modified analogues revealed that in the excited state the enol group is more acidic than the phenol group. The 6'-dehydroxylated derivative, in which only the 4-enolic hydroxyl proton is acidic, has an experimentally determined pK(a)* of 0.9 in dimethyl sulfoxide and an estimated pK(a)* of -0.3 in water. Moreover, this compound provided direct evidence that in a nonpolar, basic environment the keto form in the excited state can tautomerize into the enol, which subsequently undergoes excited-state proton transfer (ESPT) to produce enolate ion. This observation presents the first experimental evidence of excited-state keto-enol tautomerization of a firefly fluorophore, and it could be important in resolving the enol-keto conundrum related to the color-tuning mechanism of firefly bioluminescence. The 6'-dehydroxylated form of oxyluciferin adds a very rare case of a stable enol to the family of "super"photoacids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.