Abstract

Novel phases of matter with unique properties that emerge from quantum and topological protection present an important thrust of modern research. Of particular interest is to engineer these phases on demand using ultrafast external stimuli, such as photoexcitation, which offers prospects of their integration into future devices compatible with optical communication and information technology. Here, we use MeV Ultrafast Electron Diffraction (UED) to show how a transient three-dimensional (3D) Dirac semimetal state can be induced by a femtosecond laser pulse in a topological insulator ZrTe5. We observe marked changes in Bragg diffraction, which are characteristic of bond distortions in the photoinduced state. Using the atomic positions refined from the UED, we perform density functional theory (DFT) analysis of the electronic band structure. Our results reveal that the equilibrium state of ZrTe5 is a topological insulator with a small band gap of ~ 25 meV, consistent with angle-resolved photoemission (ARPES) experiments. However, the gap is closed in the presence of strong spin-orbit coupling (SOC) in the photoinduced transient state, where massless Dirac fermions emerge in the chiral band structure. The time scale of the relaxation dynamics to the transient Dirac semimetal state is remarkably long, τ ~ 160 ps, which is two orders of magnitude longer than the conventional phonon-driven structural relaxation. The long relaxation is consistent with the vanishing density of states in Dirac spectrum and slow spin-repolarization of the SOC-controlled band structure accompanying the emergence of Dirac fermions.

Highlights

  • The strong interest in topological Dirac and Weyl semimetals is rooted both in their fundamental attraction as model systems for experimenting with theories of particle physics and in their unique electronic properties, such as the suppressed backscattering, peculiar surface states, chiral and spin-polarized transport, and novel responses to applied electric and magnetic fields controlled by topological invariance, which are promising for technological applications[1,2,3,4]

  • This discovery is significant because it provides a pathway towards tuning the band structure topology that is decoupled from complexities, domain size limitations, and relaxation phenomena associated with a bulk phase transition between different crystalline phases[11]

  • To explore the evolution of photoexcitation modified band structure of ZrTe5, we performed a series of the first-principles calculations for zTe3 = 0.430−0.437

Read more

Summary

Introduction

The strong interest in topological Dirac and Weyl semimetals is rooted both in their fundamental attraction as model systems for experimenting with theories of particle physics and in their unique electronic properties, such as the suppressed backscattering, peculiar surface states, chiral and spin-polarized transport, and novel responses to applied electric and magnetic fields controlled by topological invariance, which are promising for technological applications[1,2,3,4]. Significant attention gained theoretical ideas of how to prepare these phases on demand by photoexcitation and periodic driving by external stimuli (Floquet state engineering)[5,6,7,8]. We discover a transition to a topologically distinct electronic phase which does not rely on the change of the macroscopic symmetry of the crystal lattice and can be photoinduced without an accompanying crystallographic phase transition. This discovery is significant because it provides a pathway towards tuning the band structure topology that is decoupled from complexities, domain size limitations, and relaxation phenomena associated with a bulk phase transition between different crystalline phases[11]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.