Abstract

Ultrafast electron diffraction (UED) is a powerful tool for probing atomic dynamics with a femtosecond resolution. Such a spatiotemporal resolution requires error tolerance for the UED system which includes the RF system, the laser system, the beamline elements, etc. To characterize the error tolerance of the required spatiotemporal resolution for the 1.4-cell MeV UED we are developing, we use ASTRA to simulate the UED model with errors including initial transverse beam centroid offset, RF amplitude jitter and injection phase jitter, etc. By performing simulations with different errors omitted, we can characterize the contribution of each error and thus set the tolerance for each error to obtain the required performance of UED experiment. In the end, we present the error tolerance for 10% emittance growth and 100 fs time of flight variation to maintain the required spatiotemporal resolution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.