Abstract
Titanium dioxide (TiO2) is one of the most common photosensitive materials used in photocatalysis, solar cells, self-cleaning coatings, and sunscreens. Although the crystalline TiO2 phases such as anatase and rutile are well-known to be photoactive, whether amorphous TiO2 is active in photocatalytic reactions is still controversial. Here we show that amorphous TiO2 prepared by the commonly used sol–gel method of tetrabutyl titanate hydrolysis is active in photocatalytic water reduction and methylene blue oxidation under the irradiation of a xenon lamp. The amorphous TiO2 gains photoactivity after an induction period of approximately an hour, suggesting that phase transition is involved. Using an extensive series of microscopic and spectroscopic analyses, we further show that the photoinduced crystallization by amorphous TiO2 forms a nanometer-thin layer of rutile nanocrystallites under the irradiation in the middle ultraviolet range. The resulting core–shell nanoparticles have a bandgap of 3.3 eV and are enriched with surface-active sites including reduced titanium and oxygen vacancies. The revelation of photoinduced crystallization raises the possibility of preparing photosensitive TiO2 using low-temperature radiation techniques that can not only save energy but also incorporate heat-sensitive components into manufacturing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.