Abstract

ABSTRACTUltrafast atomic dynamics induced by electronic and optical excitation opens new possibilities for functionalization of two-dimensional and layered materials. Understanding the impact of perturbed valence band populations on both the strong covalent bonds and relatively weaker van der Waals interactions is important for these anisotropic systems. While the dynamics of strong covalent bonds has been explored both experimentally and theoretically, relatively fewer studies have focused on the impact of excitation on weak bonds like van der Waals and hydrogen-bond interactions. We perform non-adiabatic quantum molecular dynamics (NAQMD) simulations to study photo-induced dynamics in MoS2 bilayer. We observe photo-induced non-thermal contraction of the interlayer distance in the MoS2 bilayer within 100 femtoseconds after photoexcitation. We identify a large photo-induced redistribution of electronic charge density, whose Coulombic interactions could explain the observed inter-layer contraction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call