Abstract

Power conversion efficiency of gallium arsenide (GaAs) nanowire (NW) solar cells is severely limited by enhanced charge recombination (CR) at sidewall surfaces, but its atomistic mechanisms are not well understood. In addition, GaAs NWs usually contain a high density of twin defects that form a twin superlattice, but its effects on CR dynamics are largely unknown. Here, quantum molecular dynamics (QMD) simulations reveal the existence of an intrinsic type-II heterostructure at the (110) GaAs surface. Nonadiabatic quantum molecular dynamics (NAQMD) simulations show that the resulting staggered band alignment causes a photoexcited electron in the bulk to rapidly transfer to the surface. We have found orders-of-magnitude enhancement of the CR rate at the surface compared with the bulk value. Furthermore, QMD and NAQMD simulations show unique surface electronic states at alternating (111)A and (111)B sidewall surfaces of a twinned [111]-oriented GaAs NW, which act as effective CR centers. The calculated large surface recombination velocity quantitatively explains recent experimental observations and provides microscopic understanding of the underlying CR processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call