Abstract

New photo-magnetic effects with an indefinitely long-time memory are found at room temperature in the epitaxial Mg 0.75Mn 0.21Co 0.04Fe 2O 4 ferrite film. Illumination of the ferrimagnetic material with low-intensity (0.4 W cm −2) circularly polarized light with or without a static magnetic field in the Faraday effect geometry results in a number of nonlinear effects in both space and time. In a uniform crystal with cubic symmetry, the long-lived photo-induced magnetization (PIM) with a unidirectional anisotropy appears along the direction of the incoming light. The effects depend on a combination of magnetic field H and the helicity of circularly polarized light σ. Two combinations H +, σ + and H −, σ − lead to a photo-induced unidirectional anisotropy with a shift of the hysteresis loop along an applied field and a change in loop parameters. The loop contracts by a factor of two, the shift of the mid-point H sh increases by factor of five surpassing the coercivity H c, the coercivity H c1 and remanence M r1 (for decreasing applied field) reverse the sign, increasing by 9 Oe and reducing by a factor of 4.5, respectively. The effects cannot be erased by a conventional demagnetization (using an AC current that is reduced to zero amplitude), but can be removed using an illumination with two other combinations ( H +, σ − and H −, σ +) as well as by heating at temperatures higher than the Curie temperature. This long-lived room-temperature memory effect may arise from the formation of complex photo-induced defects including photo-induced magnetic polarons. The possible mechanisms responsible for the appearance of a room-temperature photo-induced unidirectional anisotropy with a long-lived memory are discussed. These new photo-magnetic effects may find an application in magneto-optical memory devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.