Abstract

We study the photoabsorption properties of photoactive bulk polymer/fullerene/nanotube heterojunctions in the near-infrared region. By combining pump–probe spectroscopy and linear response time-dependent density functional theory within the random phase approximation (TDDFT-RPA) we elucidate the excited state dynamics of the E11 transition within (6,5) and (7,5) single-walled carbon nanotubes (SWNTs) and combined with poly(3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) in P3HT/PCBM/SWNT blended samples. We find the presence of a photoinduced absorption (PA) peak is related mainly to the width of the photobleach (PB) peak and the charge carrier density of the SWNT system. For mixed SWNT samples, the PB peak is too broad to observe the PA peak, whereas within P3HT/PCBM/SWNT blended samples P3HT acts as a hole acceptor, narrowing the PB peak by exciton delocalization, which reveals a PA peak. Our results suggest that the PA peak originates from a widening of the band gap in the presence of excited electrons and holes. These results have important implications for the development of new organic photovoltaic heterojunctions including SWNTs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call