Abstract

Zostera marina, a widespread seagrass, evolved from a freshwater ancestor of terrestrial monocots and successfully transitioned into a completely submerged seagrass. We found that its oxygen-evolving complex (OEC) was partially inactivated in response to light exposure, as evidenced by both the increment of the relative variable fluorescence at the K-step and the downregulation of the OEC genes and proteins. This photosynthetic regulation was further addressed at both proteome and physiology levels by an in vivo study. The unchanged content of the ΔpH sensor PsbS protein and the non-photochemical quenching induction dynamics, described by a single exponential function, verified the absence of the fast qE component. Contents and activities of chlororespiration, Mehler reaction, malic acid synthesis, and photorespiration key enzymes were not upregulated, suggesting that alternative electron flows remained unactivated. Furthermore, neither significant production of singlet oxygen nor increment of total antioxidative capacity indicated that reactive oxygen species were not produced during light exposure. In summary, these low electron consumptions may allow Z. marina to efficiently use the limited electrons caused by partial OEC photoinactivation to maintain a normal carbon assimilation level.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call