Abstract

Photosystem 2 (PS2) in general, and the oxygen-evolving complex (OEC) in particular, is one of the most thermolabile components of photosynthesis. We examined the effects of heat stress on net photosynthetic rate (PN) and content of several stromal and thylakoid-membrane proteins (including OEC proteins) in maize (Zea mays L.) in order to determine if decreases in PN during, and especially after, heat stress were correlated with decreases in the content of OEC proteins. The PN decreased with heat stress in maize, and post-heat stress recovery of PN required 4 d following the second of two heat-shocks. The decrease in PN was not the result of stomatal closure. Cellular levels of the 33, 23, and 16 kDa OEC proteins decreased with heat stress, and the decreases were greatest and most closely correlated with decreases in PN for OEC16. Following the second heat stress, full recovery of OEC levels (especially OEC16 and 33) coincided with full recovery of PN, more so than with other photosynthetic proteins examined. For example, decreases in levels of the 32-kDa QB-binding protein of the PS2 reaction center (D1), ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit, and phosphoenolpyruvate carboxylase were generally smaller than for the OEC proteins and full recovery of these proteins occurred at least 2 d prior to full recovery of photosynthesis. These results are consistent with previous fluorescence and in vitro studies by others in suggesting that heat-relaed effects on PS2 and the OEC are an important limitation to Pn during heat stress. Additionally, these results suggest that heat-related decreases in the content of OEC proteins may limit post-heat stress recovery of carbon fixation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call