Abstract

Carrier relaxation dynamics of InSe flakes is investigated by using time-resolved pump-probe reflectivity measurement. The photocarriers associated with the Pxy orbital band-edge transition at 2.40 eV, which is coupled to the in-plane polarized light, is observed to possess a lifetime of ∼19 ps at room temperature and ∼99 ps at 10 K. The temperature and power dependent carrier lifetime suggests that Shockley–Read–Hall process is the dominant nonradiative recombination mechanism responsible for the carrier relaxation. In addition, the electron scattering with a 14.5 meV optical phonon plays an active role in the carrier relaxation with increasing temperatures. A broad absorption around 1.65–1.90 eV is observed. The photocarriers associated with this broad transition show a long lifetime of ∼200 ps that is nearly independent of temperature and photon energy. This is indicative of bound carriers by defects. Our experimental results provide essential information for the characteristics of carrier dynamics and defects in InSe flakes. The experimental findings are fundamentally important for further development of microelectronics and optoelectronics based on InSe.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.