Abstract

Optically switchable proton-conductive materials will enable the development of artificial ionic circuits. However, most switchable platforms rely on conformational changes in crystals to alter the connectivity of guest molecules. Guest dependency, low transmittance, and poor processability of polycrystalline materials hinder overall light responsiveness and contrast between on and off states. Here, we optically control anhydrous proton conductivity in a transparent coordination polymer (CP) glass. Photoexcitation of tris(bipyrazine)ruthenium(II) complex in CP glass causes reversible increases in proton conductivity by a factor of 181.9 and a decrease in activation energy barrier from 0.76 eV to 0.30 eV. Modulating light intensity and ambient temperature enables total control of anhydrous protonic conductivity. Spectroscopies and density functional theory studies reveal the relationship between the presence of proton deficiencies and the decreasing activation energy barrier for proton migrations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.