Abstract
Using an approach of combining Fourier transform infrared spectroscopy with resonant illumination from a secondary external light source, we have measured the photocurrent (PC) for multiple layers of self-assembled InAs dots embedded in a matrix of InP. Without external illumination, we observe photoexcitation of electrons from bound states in the dots to the InP barrier. By additional illumination from the external light source, a strong broadening of the PC signal is observed. We interpret this broadening in terms of photoexcitation of electrons in the presence of additional holes in the dots created by the external light source. We extract the spectral distribution of the photoexcitation process at 6 and 77K, respectively, and show by comparison with theoretical calculations that it is consistent with an exciton binding energy of 20meV.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.