Abstract

We describe excitons in quantum dots by allowing for an interaction with a Fermi sea of electrons. We argue that these excitons can be realized very simply with self-assembled quantum dots, using the wetting layer as host for the Fermi sea. We show that a tunnel hybridization of a charged exciton with the Fermi sea leads to two striking effects in the optical spectra. First, the photoluminescence lines become strongly dependent on the vertical bias. Second, if the exciton spin is nonzero, the Kondo effect leads to peculiar photoluminescence line shapes with a linewidth determined by the Kondo temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.