Abstract

Photoconductivity in individual semiconducting single-wall carbon nanotubes was investigated using a confocal scanning optical microscope. The magnitude of the photocurrent was found to increase linearly with the laser intensity, and to be maximum for parallel orientation between the light polarization and the tube axis. Larger currents were obtained upon illuminating the tubes at 514.5 nm in comparison to those at 647.1 nm, consistent with the semiconducting tubes having a resonant absorption energy at the former wavelength. Moreover, the determination of the photoresponse as a function of position along single nanotubes has proven to be a useful tool to monitor local electronic structure effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.