Abstract

We report a systematic study of the photoelectron spectroscopy of hydrated electrons in liquid water jets using multiple precursors and photodetachment wavelengths. Hydrated electrons were generated in and detached from liquid microjets using two photons from a single nanosecond laser pulse at 266 or 213 nm. Solutions of 50 to 250 mM potassium hexacyanoferrate(II) or potassium iodide were used to provide precursor anions. All of our experimental conditions yield similar results, giving a mean vertical binding energy of 3.6 ± 0.1 eV at a temperature of ∼280 K, a slightly higher value than in recent reports.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.