Abstract

The photoelectrochromic (PEC) device, a combination of a dye solar cell and an electrochromic film, can be used for the dynamic solar control of buildings under illumination or with an external voltage. Typically, titanium oxide (TiO2) and tungsten oxide (WO3) films are being prepared from colloids or sol-gel chemistry with high porosity and high surface area as functional layers for a photoelectrochromic device in lab scale. We have, for the first time, successfully developed a PEC device with conventionally sputter deposited TiO2 and WO3 films. This coating technique is attractive due to the well documented upscaling capability and industrial viability for window applications. The functional layers WO3 and TiO2 were deposited onto fluorine doped oxide (F:SnO2) coated glass . Characterization of WO3 and TiO2 was performed in an electrochromic cell and in a dye solar cell, respectively. Three types of PEC devices with different layer configuration were constructed and their performance based on visual transmissions was compared. In best case, the visual transmission could be switched from 61 down to 15% in 30min under 1.5 A.M. illumination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.