Abstract
Nanoporous (NP) GaN thin films, which were fabricated by an electrochemical etching method at different voltages, were used as photoelectrodes during photoelectrochemical (PEC) water splitting in 1 M oxalic acid solution. Upon illumination at a power density of 100 mW cm−2 (AM 1.5), water splitting is observed in NP GaN thin films, presumably resulting from the valence band edge which is more positive than the redox potential of the oxidizing species. In comparison with NP GaN film fabricated at 8 V, NP GaN obtained at 18 V shows nearly twofold enhancement in photocurrent with the maximum photo-to-hydrogen conversion efficiency of 1.05% at ~0 V (versus Ag/AgCl). This enhancement could be explained with (i) the increase of surface area and surface states, and (ii) the decrease of resistances and carrier concentration in the NP GaN thin films. High stability of the NP GaN thin films during the PEC water splitting further confirms that the NP GaN thin film could be applied to the design of efficient solar cells and solar fuel devices.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have