Abstract

The most economical and efficient method to produce green hydrogen relies on electrochemistry, the electricity for which is of a green origin, and on photocatalytic water splitting. The latter technology involves the use of a photocatalyst or a photo-electrocatalyst to transform solar energy into chemical energy. Vast efforts have thus been dedicated to the pursuit of such a catalyst.The current study focused on the development of a heterogeneous photoelectrochemical system in which the Na3[Ru2(μ-CO3)4] complex was used as a WOC. To that end, two types of electrodes were prepared: coated indium tin oxide (ITO) and meta-chemical surface (MCS) electrodes. Under 420 nm illumination, both electrode types exhibited higher catalytic currents than were observed without light.Our novel application of the Na3[Ru2(μ-CO3)4] complex as a catalyst in the photoelectrochemical water oxidation reaction requires minute amounts of the complex. The study findings add to the knowledge about the water-splitting process, and ultimately, they may facilitate the broader adoption of hydrogen as an environmentally friendly and increasingly accessible energy source.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.